Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Sci Rep ; 14(1): 8714, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622266

RESUMO

Green, photosynthesizing plants can be proficiently used as cost-effective, single-use, fully biodegradable bioreactors for environmentally-friendly production of a variety of valuable recombinant proteins. Being near-infinitely scalable and most energy-efficient in generating biomass, plants represent profoundly valid alternatives to conventionally used stationary fermenters. To validate this, we produced a plastome-engineered tobacco bioreactor line expressing a recombinant variant of the protein A from Staphylococcus aureus, an affinity ligand widely useful in antibody purification processes, reaching accumulation levels up to ~ 250 mg per 1 kg of fresh leaf biomass. Chromatography resin manufactured from photosynthetically-sourced recombinant protein A ligand conjugated to agarose beads demonstrated the innate pH-driven ability to bind and elute IgG-type antibodies and allowed one-step efficient purification of functional monoclonal antibodies from the supernatants of the producing hybridomas. The results of this study emphasize the versatility of plant-based recombinant protein production and illustrate its vast potential in reducing the cost of diverse biotechnological applications, particularly the downstream processing and purification of monoclonal antibodies.


Assuntos
Cromatografia , Proteína Estafilocócica A , Proteína Estafilocócica A/química , Ligantes , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Proteínas de Plantas/metabolismo , Cromatografia de Afinidade/métodos
2.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673914

RESUMO

Plant viral nanoparticles (VNPs) are attractive to nanomedicine researchers because of their safety, ease of production, resistance, and straightforward functionalization. In this paper, we developed and successfully purified a VNP derived from turnip mosaic virus (TuMV), a well-known plant pathogen, that exhibits a high affinity for immunoglobulins G (IgG) thanks to its functionalization with the Z domain of staphylococcal Protein A via gene fusion. We selected cetuximab as a model IgG to demonstrate the versatility of this novel TuMV VNP by developing a fluorescent nanoplatform to mark tumoral cells from the Cal33 line of a tongue squamous cell carcinoma. Using confocal microscopy, we observed that fluorescent VNP-cetuximab bound selectively to Cal33 and was internalized, revealing the potential of this nanotool in cancer research.


Assuntos
Nanopartículas , Humanos , Nanopartículas/química , Linhagem Celular Tumoral , Potyvirus , Imunoglobulina G/metabolismo , Cetuximab/farmacologia , Cetuximab/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047449

RESUMO

Our laboratory has identified and developed a unique human-engineered domain (HED) structure that was obtained from the human Alpha-2-macroglobulin receptor-associated protein based on the three-dimensional structure of the Z-domain derived from Staphylococcal protein A. This HED retains µM binding activity to the human IgG1CH2-CH3 elbow region. We determined the crystal structure of HED in association with IgG1's Fc. This demonstrated that HED preserves the same three-bundle helix structure and Fc-interacting residues as the Z domain. HED was fused to the single chain variable fragment (scFv) of mAb 4D5 to produce an antibody-like protein capable of interacting with the p185Her2/neu ectodomain and the Fc of IgG. When further fused with murine IFN-γ (mIFN-γ) at the carboxy terminus, the novel species exhibited antitumor efficacy in vivo in a mouse model of human breast cancer. The HED is a novel platform for the therapeutic utilization of engineered proteins to alleviate human disease.


Assuntos
Neoplasias da Mama , Anticorpos de Cadeia Única , Humanos , Animais , Camundongos , Feminino , Anticorpos de Cadeia Única/genética , Proteína Estafilocócica A/química
4.
Protein Expr Purif ; 207: 106269, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023994

RESUMO

The ever-increasing speed of biotherapeutic drug discovery has driven the development of automated and high throughput purification capabilities. Typically, purification systems require complex flow paths or third-party components that are not found on a standard fast protein liquid chromatography instrument (FPLC) (e.g., Cytiva's ÄKTA) to enable higher throughput. In early mAb discovery there is often a trade-off between throughput and scale where a high-throughput process requires miniaturized workflows necessitating a sacrifice in the amount of material generated. At the interface of discovery and development, flexible automated systems are required that can perform purifications in a high-throughput manner, while also generating sufficient quantities of preclinical material for biophysical, developability, and preclinical animal studies. In this study we highlight the engineering efforts to generate a highly versatile purification system capable of balancing the purification requirements between throughput, chromatographic versatility, and overall product yields. We incorporated a 150 mL Superloop into an ÄKTA FPLC system to expand our existing purification capabilities. This allowed us to perform a range of automated two-step tandem purifications including primary affinity captures (protein A (ProA)/immobilized metal affinity chromatography (IMAC)/antibody fragment (Fab)) followed by secondary polishing with either size exclusion (SEC) or cation exchange (CEX) chromatography. We also integrated a 96 deep-well plate fraction collector into the ÄKTA FPLC system with purified protein fractions being analyzed by a plate based high performance liquid chromatography instrument (HPLC). This streamlined automated purification workflow allowed us to process up to 14 samples within 24 h, enabling purification of ∼1100 proteins, monoclonal antibodies (mAbs), and mAb related protein scaffolds during a 12-month period. We purified a broad range of cell culture supernatant volumes, between 0.1 and 2 L, with final purification yields up to 2 g. The implementation of this new automated, streamlined protein purification process greatly expanded our sample throughput and purification versatility while also enabling the accelerated production of greater quantities of biotherapeutic candidates for preclinical in vivo animal studies and developability assessment.


Assuntos
Anticorpos Monoclonais , Proteína Estafilocócica A , Animais , Cromatografia de Afinidade/métodos , Cromatografia Líquida de Alta Pressão , Proteína Estafilocócica A/química , Descoberta de Drogas
5.
J Chromatogr A ; 1671: 463040, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35428031

RESUMO

Mechanistic understanding of immunoglobulin G (IgG) binding to protein A is crucial for the design and development of high-performance protein A chromatography. In this work, the IgG binding domain (Z) of protein A from Staphylococcus aureus was genetically modified by introducing a cysteine residue at the N-terminus (Cys-Z) or a cysteine-lysine dipeptide at the C-terminus (Z-Cys), and the two ligands were used to unravel the IgG binding mechanism by means of binding kinetics and different single molecule measurements. Surface plasma resonance (SPR) measurement of the binding kinetics of mouse myeloma IgG2a (mIgG2a) to the two ligands indicated that oriented ligand immobilization significantly increased the association rate constant of mIgG2a, and Z-Cys had the highest binding affinity to mIgG2a among the three ligands (Cys-Z, Z-Cys and Z). This was attributed to the synergistic contribution of the high association rate constant and low dissociation rate constant to mIgG2a. Furthermore, quartz crystal microbalance with energy dissipation monitoring (QCM-D) measurement provided the maximum adsorption densities of IgGs on the Z-Cys-immobilized chip as zeta potentials of IgGs were nearly zero. The QCM-D investigation revealed that the adsorbed layer was dependent on ligand type and density, and IgG. Moreover, Z-Cys and Cys-Z induced IgG binding in flipped orientations, as evidenced by the antigen-antibody reaction. Finally, rectangular DNA origami tiles were introduced to analyze the molecular orientation of adsorbed IgG. Single-molecule imaging showed that mIgG2a was associated with flexible Z-Cys on the tiles predominantly in side-on and end-on orientations. The research has provided molecular insight into the binding mechanism of IgG molecules at liquid-solid interfaces and would help design new protein A-based ligands and high-capacity adsorbents.


Assuntos
Imunoglobulina G , Proteína Estafilocócica A , Animais , Cisteína/química , Imunoglobulina G/química , Cinética , Ligantes , Camundongos , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Estafilocócica A/química
6.
Biotechnol J ; 17(5): e2100433, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35089643

RESUMO

Continuous chromatography is increasingly being used across the biotechnology industry due to its economic advantages. For adoption in commercial manufacturing, also models for virus clearance studies must be available. It is demonstrated how for a virus clearance study for a multispecific antibody, the continuous protein A capture chromatography process, being run on multiple interconnected columns, can be mimicked with only a single column. With this mimicking small-scale model, resources and complexity can be minimized, when conducting virus clearance studies at a contract research organization (CRO) lab. Obtained log reduction values (LRV) for murine leukemia virus (xMuLV) and minute virus of mice (MVM) virus, used as model viruses, are comparable to batch protein A chromatography and results described by other groups. The feasibility of this mimicking small-scale model helps to further reduce barriers to adoption when implementing continuous chromatography.


Assuntos
Anticorpos Monoclonais , Vírus , Animais , Anticorpos Monoclonais/química , Cromatografia , Vírus da Leucemia Murina , Camundongos , Proteína Estafilocócica A/química
7.
Microb Cell Fact ; 20(1): 212, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789248

RESUMO

Protein A (SpA) is one of the most important Staphylococcus aureus cell wall proteins. It includes five immunoglobulin (Ig)-binding domains which can bind to immune complexes through the Fc region of immunoglobulins. The binding of SpA to the polymeric supports can be used to prepare affinity chromatography resins, which are useful for immunoprecipitation (IP) of antibodies. Protein A is also used to purify many anti-cancer antibodies. In this study, SpA was displayed on the surface of Bacillus subtilis cells using a sortase-mediated system to display the target protein to the B. subtilis cell wall. A series of plasmids consisting of cassettes for cell wall-directed protein A as well as negative controls were constructed and transformed into B. subtilis WASD (wprA sigD) cells. SDS-PAGE, western blot, flow cytometry, functional IgG purification assay, and a modified ELISA assay were used to confirm the surface display of SpA and evaluate its function. Semi-quantitative ELISA results showed that the binding capacity of lyophilized Bs-SpA is 100 µg IgG from rabbit serum per 1 mg of cells under optimal experimental conditions. Low production costs, optimal performance, and the use of a harmless strain compared to a similar commercial product predict the possible use of SpA immobilization technology in the future.


Assuntos
Aminoaciltransferases/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Proteína Estafilocócica A/metabolismo , Anticorpos/química , Anticorpos/isolamento & purificação , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Parede Celular/enzimologia , Parede Celular/metabolismo , Ligação Proteica , Proteína Estafilocócica A/química , Proteína Estafilocócica A/imunologia , Staphylococcus aureus/química
8.
Front Immunol ; 12: 662782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995388

RESUMO

Staphylococcus aureus, a common cause of serious and often fatal infections, is well-armed with secreted factors that disarm host immune defenses. Highly expressed in vivo during infection, Staphylococcal protein A (SpA) is reported to also contribute to nasal colonization that can be a prelude to invasive infection. Co-evolution with the host immune system has provided SpA with an Fc-antibody binding site, and a Fab-binding site responsible for non-immune superantigen interactions via germline-encoded surfaces expressed on many human BCRs. We wondered whether the recurrent exposures to S. aureus commonly experienced by adults, result in the accumulation of memory B-cell responses to other determinants on SpA. We therefore isolated SpA-specific class-switched memory B cells, and characterized their encoding VH : VL antibody genes. In SpA-reactive memory B cells, we confirmed a striking bias in usage for VH genes, which retain the surface that mediates the SpA-superantigen interaction. We postulate these interactions reflect co-evolution of the host immune system and SpA, which during infection results in immune recruitment of an extraordinarily high prevalence of B cells in the repertoire that subverts the augmentation of protective defenses. Herein, we provide the first evidence that human memory responses are supplemented by B-cell clones, and circulating-antibodies, that bind to SpA determinants independent of the non-immune Fc- and Fab-binding sites. In parallel, we demonstrate that healthy individuals, and patients recovering from S. aureus infection, both have circulating antibodies with these conventional binding specificities. These findings rationalize the potential utility of incorporating specially engineered SpA proteins into a protective vaccine.


Assuntos
Linfócitos B/imunologia , Evolução Clonal/imunologia , Memória Imunológica , Proteína Estafilocócica A/imunologia , Linfócitos B/metabolismo , Biomarcadores , Humanos , Imunofenotipagem , Modelos Biológicos , Ligação Proteica/imunologia , Conformação Proteica , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Staphylococcus aureus/imunologia , Relação Estrutura-Atividade , Superantígenos/imunologia
9.
J Chromatogr A ; 1640: 461948, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33561708

RESUMO

Fast-throughput and cost reduction of current purification platforms are becoming increasing requests during antibody manufacture. The macroporous-matrix absorbents have presented extensive potentiality in improving operational throughput during purification of macromolecule. And meanwhile the peptide ligand has become a promising alternative to recombinant protein ligands for cost reduction of chromatographic purification. Therefore, here we designed a functionalized microspheres resin with both macroporous matrix of polymerized glycidyl methacrylate and ethylene glycol dimethacrylate (PGMA-EDMA) and peptide ligand of hexapeptide (FYEILH). In order to circumvent the steric effect of peptides and amplify the binding sites on macroporous matrix, the peptide ligand was coupled on a liner PGMA polymer brushes grafted on microspheres. Comparing to the conventional agarose-matrix resin and the general peptide-grafted microspheres, the functionalized microspheres presented excellent permeability and high capacity to rapid loading hIgG by maintaining a stable level of dynamic binding capacity at fast flow rate above 110 column volume per hour (cv/h) and very short residence time below 0.5 min. Such functionalized microspheres provide a facile and broadly applicable strategy to develop the attractive candidate for rapid and cost-reduced purification of antibody.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Imunoglobulina G/isolamento & purificação , Microesferas , Peptídeos/química , Polímeros/química , Adsorção , Animais , Células CHO , Cromatografia , Cricetulus , Difusão , Humanos , Ligantes , Permeabilidade , Polimerização , Porosidade , Domínios Proteicos , Proteínas Recombinantes/química , Resinas Sintéticas/química , Sefarose/química , Soroalbumina Bovina/química , Proteína Estafilocócica A/química , Propriedades de Superfície
10.
J Chromatogr A ; 1625: 461237, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32709313

RESUMO

The quest for ligands alternative to Protein A for the purification of monoclonal antibodies (mAbs) has been pursued for almost three decades. Yet, the IgG-binding peptides known to date still fall short of the host cell protein (HCP) logarithmic removal value (LRV) set by Protein A media (2.5-3.1). In this study, we present an integrated computational-experimental approach leading to the discovery of peptide ligands that provide HCP LRVs on par with Protein A. First, the screening of 60,000 peptide variants was performed using a high-throughput search algorithm to identify sequences that ensure IgG affinity binding. Select sequences WQRHGI, MWRGWQ, RHLGWF, and GWLHQR were then negatively screened in silico against a panel of model HCPs to ensure the selection of peptides with high binding selectivity. Candidate ligands WQRHGI and MWRGWQ were conjugated to chromatographic resins and characterized by isothermal binding and breakthrough assays to quantify static and dynamic binding capacity (Qmax and DBC10%), respectively. The resulting Qmax were 52.6 mg of IgG per mL of adsorbent for WQRHGI and 57.48 mg/mL for MWRGWQ, while the DBC10% (2 minutes residence time) were 30.1 mg/mL for WQRHGI and 36.4 mg/mL for MWRGWQ. Evaluation of the peptides by isothermal titration calorimetry (ITC) confirmed the binding energy predicted in silico, and an amino acid scanning study corroborated the affinity-like binding activity of the peptides. WQRHGI-WorkBeads resin was finally characterized by purification of a monoclonal antibody from a Chinese Hamster Ovary (CHO) cell culture harvest, affording a remarkable HCP LRV of 2.7, and consistent product yield and purity over 100 chromatographic cycles. These results demonstrate the potential of WQRHGI as an effective alternative to Protein A for antibody purification.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/métodos , Peptídeos/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetinae , Cricetulus , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Ligantes , Peptídeos/síntese química , Peptídeos/metabolismo , Ligação Proteica , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
11.
Protein Expr Purif ; 166: 105520, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31644959

RESUMO

An affibody is a 58 amino acids peptide derived from the Z domain of staphylococcal protein A and generally applied in areas such as imaging diagnosis, clinical therapeutics and biotechnology research. To screen for an affibody targeting the immune checkpoint PD-L1, a combinatorial affibody library was generated in yeast using degenerate overlap PCR primers and In-fusion technology. Z-j1 and Z-j2 affibodies targeting the Ig-like V domain of PD-L1 were screened and identified from this combinatorial library using the yeast two hybrid system. The Z-j1 and Z-j2 recombinant affibody proteins were over produced in E.coli and purified. ELISA and GST pull-down assays showed that recombinant Z-j1 and Z-j2 affibody proteins bound with high affinity to PD-L1 and inhibited the interaction of PD-1/PD-L1. Thus, novel affibodies targeting the immune checkpoint PD-1/PD-L1 were identified and produced in this study and have the potential to be used in cancer immunotherapy.


Assuntos
Antineoplásicos/química , Antígeno B7-H1/imunologia , Peptídeos/genética , Receptor de Morte Celular Programada 1/imunologia , Proteínas Recombinantes de Fusão/genética , Sequência de Aminoácidos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Escherichia coli , Imunoterapia , Biblioteca de Peptídeos , Peptídeos/química , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/genética
12.
Biotechnol Bioeng ; 116(9): 2275-2284, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31062872

RESUMO

Multicolumn capture chromatography is gaining increased attention lately due to the significant economic and process advantages it offers compared with traditional batch mode chromatography. However, for wide adoption of this technology in clinical and commercial space, it requires scalable models for executing viral validation studies. In this study, viral validation studies were conducted under cGLP guidelines to assess retro- (X-MuLV) and parvo-virus (MVM) clearance across twin-column continuous capture chromatography (CaptureSMB). A surrogate model was also developed using standard batch mode chromatography based on flow path modifications to mimic the loading strategy used in CaptureSMB. The results show that a steady state was achieved by the second cycle for both antibody binding and virus clearance and that the surrogate model using batch mode chromatography equipment provided impurity clearance that was comparable to that obtained during cyclical operation of CaptureSMB. Further, the log reduction values (LRVs) achieved during CaptureSMB were also comparable to the LRVs obtained using standard batch capture chromatography. This was expected since the mode of virus separation during protein A chromatography is primarily based on removal during the flow through and wash steps. Finally, this study also presents assessments on the resin cleaning strategy during continuous chromatography and how the duration of clean-in-place solution exposure impacts virus carryover.


Assuntos
Vírus da Leucemia Murina/química , Vírus Miúdo do Camundongo/química , Modelos Químicos , Inativação de Vírus , Cromatografia Líquida , Proteína Estafilocócica A/química
13.
PDA J Pharm Sci Technol ; 73(5): 470-486, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31101706

RESUMO

The BioPhorum Development Group Viral Clearance Workstream performed a collaborative retrospective analysis to evaluate packed bed chromatographic resin performance after repeated cycling for two commonly used chromatography steps in biopharmaceutical manufacturing: protein A and anion exchange. Key variables evaluated in the assessment included virus type, resin type, number of reuse cycles, and virus challenge. In this retrospective analysis of viral clearance data on naïve versus cycled resin, powered by the availability of a decade's worth of accumulated industry data, clearance capability was not negatively impacted by resin cycling. This finding is consistent with publications showing that surrogates for viral clearance capabilities could be employed in lieu of testing the viral clearance of cycled resins for protein A and anion exchange chromatography. The rigorous analysis of the retrospective data supports the view that viral clearance studies for cycled resins are not necessary provided that appropriate cleaning methods are applied during repeated use of the chromatography columns.LAY ABSTRACT: The manufacturing processes for biopharmaceutical products often include reusable chromatographic resins that remove process- and product-related impurities as well as potential contaminating viruses. Typically, chromatography resin is "cycled" through repeated steps of resin conditioning, product purification, and resin cleaning. The cycling approach has been evaluated in both small- and full-scale studies that show the performance parameters are maintained. The ability to remove virus is demonstrated separately in a focused small-scale virus-spiking study that is resource-intensive and costly. This paper is a retrospective review of industry data comparing virus removal by naïve and repeatedly cycled resins that summarizes the viral clearance impact of re-using protein A and anion exchange chromatography resins. The key variables evaluated in the assessment included virus type, resin type, number of cycles, and virus challenge. In this retrospective analysis, it was found that the viral clearance capability is not negatively impacted by resin cycling. This finding is consistent with other publications and supports the view that viral clearance studies for cycled resins are not necessary if appropriate cleaning methods are applied during the repeated use of the chromatography columns.Abbreviations: AAV-2, Adeno-associated virus; A-MuLV, Amphotropic murine leukemia virus; AEX, Anion-exchange chromatography; B/E, Bind and elute; BVDV, Bovine viral diarrhea virus; C.P.G., Controlled pore glass; DEAE, Diethylaminoethanol; EMCV, Encephalomyocarditis virus; FT, Flow through; HAV, Hepatitis A virus; HSV-1, Herpes simplex virus type 1; LOD, Limit of detection; LOQ, Limit of quantification; LRF, Log10 reduction factor; mAb, Monoclonal antibody; MVM, Minute virus of mice; NaOH, Sodium hydroxide; PA, Protein A; PPV, Porcine parvovirus; QA, Quaternary amine; QP, Quaternized polyethyleneimine; qPCR, Quantitative polymerase chain reaction; Reo3, Reovirus type 3; SuHV-1, Suid herpesvirus; SV40, Simian virus 40; X-MuLV, Xenotropic murine leukemia virus.


Assuntos
Produtos Biológicos/normas , Cromatografia por Troca Iônica/métodos , Contaminação de Medicamentos/prevenção & controle , Vírus/isolamento & purificação , Resinas de Troca Aniônica , Estudos Retrospectivos , Proteína Estafilocócica A/química
14.
Anal Biochem ; 578: 1-6, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028717

RESUMO

Immuno-PCR (IPCR) provides sensitive and versatile detection of a variety of antigens by conjugating a PCR-amplifiable DNA reporter to a specific antibody or an aptamer. Several methodologies have been developed to prepare appropriate DNA-antibody conjugates, but in most cases, it remains difficult to label polypeptides with high site-specificity and fixed stoichiometry. To address this issue, we first demonstrated the feasibility of IPCR based on cDNA display, a 1:1 covalent complex of a polypeptide and its encoding cDNA via puromycin at the single molecule level. Several other in vitro display technologies (e.g., ribosome display, mRNA display) have similar simple nucleic acid-peptide linkage. However, they should be unsuitable for diagnostic applications because of their lability against heat and RNase. The newly developed system here, termed cDNA display mediated immuno-PCR (cD-IPCR), proved to work in direct- and sandwich-type detection of target proteins. Detection of a target in serum was also possible, using a VHH (variable domain of the heavy chain of a heavy chain antibody) antibody as a binding molecule. Although further improvement on sensitivity and quantitativity is necessary before the method becomes useful, we believe this work demonstrated a potential of cD-IPCR as an alternative novel format of IPCR.


Assuntos
DNA Complementar/química , Ensaio de Imunoadsorção Enzimática/métodos , Proteína Estafilocócica A/química , Reação em Cadeia da Polimerase/métodos , Domínios e Motivos de Interação entre Proteínas , Anticorpos de Cadeia Única/química
15.
Talanta ; 194: 664-672, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609588

RESUMO

Detection of disease-related biomarkers in plasma provides a possibility for early clinical diagnosis. However, highly abundant proteins in plasma, such as human immunoglobulin (hIgG) are a main impediment to biomarker discovery and analysis. Therefore, rapid and easy depletion of hIgG in the plasma is beneficial for biomarker discovery. In this work, citrate-capped gold nanoparticles (GNPs) were synthesized and conjugated with cysteine-tagged recombinant Protein A (rProtA) and Protein G (ProtG), respectively. The resultant protein-GNP bioconjugates were thoroughly characterized by surface plasmon resonance spectroscopy, hydrodynamic light scattering (DLS), electrophoretic light scattering (ELS) and rotary metal shadowing transmission electron microscopy (TEM) measurements. In order to quantitatively control the amount of the rProt A and ProtG on the GNP surface, binding studies and isotherm measurements have been performed. rProtA-GNP conjugate exhibited better binding capacities towards hIgG. Its surface coverage with rProtA molecules was determined by protein quantification after hydrolysis of the rProtA-GNP conjugate, GNP removal and subsequent amino acid assay by HPLC with fluorescence detection. Binding isotherms acquired with hIgG revealed their maximal capacity for depletion experiments. Depletion efficiency of around 90% could be achieved in a standard solution. With optimized amount of rProtA-GNP and ProtG-GNP, respectively, hIgG could be efficiently extracted from real samples (human plasma and hIgG-spiked cell culture supernatant). A benchmarking study with ProteinA-modified magnetic particles (Dynabeads) was performed as well. The results document that these rProtA-GNP and ProtG-GNP affinity nanoparticles could be a promising alternative to magnetic bead based immunoaffinity trapping and constitutes a flexible platform for both depletion of hIgG from human plasma and antibody affinity capture from cell culture supernatants in process control of biopharmaceuticals by simple solution handling (via pipetting) and centrifugation steps.


Assuntos
Proteínas de Bactérias/química , Ouro/química , Imunoglobulina G/sangue , Imunoglobulina G/isolamento & purificação , Nanopartículas Metálicas/química , Proteína Estafilocócica A/química , Linhagem Celular , Humanos , Imunoglobulina G/química , Imãs/química , Microesferas
16.
Biotechnol Bioeng ; 116(4): 846-856, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30450554

RESUMO

Protein A chromatography is an effective capture step to separate Fc-containing biopharmaceuticals from cell culture impurities but is generally not effective for virus removal, which tends to vary among different products. Previous findings have pointed to the differences in feedstocks to protein A, composed of the products and other cell culture-related impurities. To separate the effect of the feedstock components on virus removal, and understand why certain monoclonal antibody (mAb) products have low virus log reduction values (LRVs) across protein A chromatography, we investigated the partitioning of three types of viruses on Eshmuno® A columns. Using pure mAbs, we found that low LRVs were correlated with the presence of the particular mAb product itself, causing altered partitioning patterns. Three virus types were tested, and the trend in partitioning was the same for retrovirus-like particles (RVLPs) expressed in the cell substrate, and its model virus xenotropic murine leukemia virus (XMuLV), whereas slightly different for murine minute virus. These results were extended from previous observation described by Bach and Connell-Crowley (2015) studying XMuLV partitioning on MabSelect SuRe columns, providing further evidence using additional types of viruses and resin. Other product-specific cell culture impurities in harvested cell culture fluid played a lesser role in causing low LRVs. In addition, using high throughput screening (HTS) methods and Eshmuno® A resin plates, we identified excipients with ionic and hydrophobic properties that could potentially alleviate the mAb-induced LRV reduction, indicating that both ionic and hydrophobic interactions were involved. More excipients of such nature or combinations, once optimized, can potentially be used as load and/or wash additives to improve virus removal by protein A. We have demonstrated that HTS is a valuable tool for this type of screening, whether to gain deeper understanding of a mechanism, or to provide guidance during the optimization of protein A process with improved virus removal.


Assuntos
Anticorpos Monoclonais/química , Vírus da Leucemia Murina/isolamento & purificação , Vírus Miúdo do Camundongo/isolamento & purificação , Retroviridae/isolamento & purificação , Proteína Estafilocócica A/química , Animais , Células CHO , Cromatografia de Afinidade/métodos , Cricetulus
17.
J Nanobiotechnology ; 16(1): 59, 2018 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-30077180

RESUMO

BACKGROUND: Various nanocarriers have been used to deliver subunit vaccines specifically to dendritic cells (DCs) for the improvement of immunogenicity. However, due to their insufficient DC priming ability, these vaccines could not elicit effective innate immunity. We have recently developed a DC-targeting bio-nanocapsule (BNC) by displaying anti-CD11c IgGs via protein A-derived IgG Fc-binding Z domain on the hepatitis B virus envelope L protein particles (α-DC-ZZ-BNC). RESULTS: After the chemical modification with antigens (Ags), the α-DC-ZZ-BNC-Ag complex could deliver Ags to DCs efficiently, leading to effective DC maturation and efficient endosomal escape of Ags, followed by Ag-specific T cell responses and IgG productions. Moreover, the α-DC-ZZ-BNC modified with Japanese encephalitis virus (JEV) envelope-derived D3 Ags could confer protection against 50-fold lethal dose of JEV injection on mice. CONCLUSION: The α-DC-ZZ-BNC-Ag platform was shown to induce humoral and cellular immunities effectively without any adjuvant.


Assuntos
Antígeno CD11c/imunologia , Células Dendríticas/imunologia , Imunogenicidade da Vacina , Vacinas contra Encefalite Japonesa/imunologia , Nanocápsulas/química , Animais , Antígenos Virais/administração & dosagem , Antígenos Virais/imunologia , Linhagem Celular , Células Dendríticas/metabolismo , Vírus da Encefalite Japonesa (Espécie)/química , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Humanos , Imunidade Celular , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Vacinas contra Encefalite Japonesa/administração & dosagem , Camundongos Endogâmicos BALB C , Ovalbumina/química , Tamanho da Partícula , Proteína Estafilocócica A/química , Proteínas do Envelope Viral/química
18.
Nanotechnology ; 29(14): 145501, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29384499

RESUMO

Glial fibrillary acidic protein (GFAP) is expressed in the central nervous system and the level of GFAP normally rises with brain injury and astroglial tumors. So, serum GFAP is used as a marker for diagnosing various types of brain damage and astroglial tumors. In this study, a new sensor based on carbon dots (CDs) linked with antibodies to specifically detect GFAP in human serum was developed. Anti-GFAP (Ab1) linked with protein A/G agarose resin (PA/G) as a capture antibody (PA/G-Ab1) and anti-GFAP (Ab2) labeled with CDs as a detection antibody (CDs-Ab2) were prepared firstly. Then the CD-linked antibody immunosorbent assay (CLAISA) method was constructed based on the sandwich conjunction reaction among PA/G-Ab1, GFAP, and CDs-Ab2. CLAISA, using the fluorescence of PA/G-Ab1-GFAP-Ab2-CDs as the direct signal, enabled the proposed immunosensor to detect GFAP sensitively with a linear range of 0.10-8.00 ng ml-1 and a detection limit of 25 pg ml-1. This method was applied to the determination of GFAP in human serum by the standard addition method, and the results showed high accuracy and precision. Considering the easy synthetic process and excellent performance of CLAISA, this method has great potential to be used to monitor GFAP in the clinic.


Assuntos
Anticorpos Monoclonais/química , Carbono/química , Proteína Glial Fibrilar Ácida/sangue , Técnicas de Imunoadsorção , Pontos Quânticos/química , Animais , Anticorpos Monoclonais/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Fluorescência , Humanos , Imunização , Limite de Detecção , Pontos Quânticos/ultraestrutura , Coelhos , Reprodutibilidade dos Testes , Proteína Estafilocócica A/química , Proteína Estafilocócica A/imunologia
19.
J Pharm Pharmacol ; 70(5): 625-635, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29380379

RESUMO

OBJECTIVES: Oxidation of protein therapeutics is a major chemical degradation pathway which may impact bioactivity, serum half-life and stability. Therefore, oxidation is a relevant parameter which has to be monitored throughout formulation development. Methods such as HIC, RPLC and LC/MS achieve a separation of oxidized and non-oxidized species by differences in hydrophobicity. Antibody-drug conjugates (ADC) although are highly more complex due to the heterogeneity in linker, drug, drug-to-antibody ratio (DAR) and conjugation site. The analytical protein A chromatography can provide a simple and fast alternative to these common methods. METHODS: A miniature analytical protein A chromatography method in combination with an IdeS digest was developed to analyse ADCs. The IdeS digest efficiency of an IgG1 was monitored using SEC-HPLC and non-reducing SDS-PAGE. An antibody-fluorescent dye conjugate was conjugated at different dye-to-antibody ratios as model construct to mimic an ADC. KEY FINDINGS: With IdeS, an almost complete digest of a model IgG1 can be achieved (digested protein amount >98%). This enables subsequent analytical protein A chromatography, which consequently eliminates any interference of payload with the stationary phase. CONCLUSION: A novel high-throughput method for an interchain cysteine-linked ADC oxidation screens during formulation development was developed.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Imunoconjugados/análise , Imunoglobulina G/química , Proteína Estafilocócica A/química , Cromatografia Líquida de Alta Pressão/métodos , Cisteína/química , Eletroforese em Gel de Poliacrilamida/métodos , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Imunoconjugados/química , Oxirredução
20.
Biosens Bioelectron ; 100: 169-175, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28888179

RESUMO

A novel immunosensor for detecting Newcastle disease virus (NDV) was developed using excessively tilted fiber grating (Ex-TFG) coated with gold nanospheres (AuNs). AuNs were coated on the Ex-TFG surface via Au-S bonds using 3-mercaptopropyltrimethoxysilane (MPTMS), and the activated staphylococcal protein A (SPA) was linked to AuNs by covalent bonds via cysteamine. AuNs greatly enhanced the impact of the analyte on the fiber cladding mode through the local surface Plasmon resonance (LSPR) effect, thus improving the detection limit and sensitivity of the immunosensor. Meanwhile, SPA enhanced the bioactivity of anti-NDV monoclonal antibodies (MAbs), thus promoting the effectiveness of specific binding events on the fiber surface. Immunoassays were performed by monitoring the resonance wavelength shift of the proposed sensor under NDV samples containing different particle amounts. Specificity was assessed, and clinical tests for NDV were performed by contrast experiments. Experimental results showed that the detection limit for NDV was about 5~10 times improved compared to that of reference Ex-TFG without AuN treatment. Moreover, the novel biosensor was reusable and could potentially be applied in clinic.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Ouro/química , Imunoensaio/instrumentação , Nanosferas/química , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/isolamento & purificação , Ressonância de Plasmônio de Superfície/instrumentação , Animais , Anticorpos Imobilizados/química , Desenho de Equipamento , Tecnologia de Fibra Óptica/métodos , Humanos , Imunoensaio/métodos , Limite de Detecção , Nanosferas/ultraestrutura , Doença de Newcastle/diagnóstico , Proteína Estafilocócica A/química , Ressonância de Plasmônio de Superfície/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA